Algebraic Expressions
Exercise 9.2
Question 1: Find the product of the following pairs of monomials.
(i) 4, 7p
Answer: `4 xx 7 p = 28p`
(ii) – 4p, 7p
Answer: `- 4p xx 7p = -28p^2`
(iii) – 4p, 7pq
Answer: `- 4p xx 7pq = -28p^2q`
(iv) `4p^3`, – 3p
Answer: `4p^3q xx - 3p = -12p^4q`
(v) 4p, 0
Answer: `4p xx 0 = 0`
Question 2: Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
`(p, q)`, `(10m, 5n)`, (`20x^2\5y^2`, `(4x, 3x^2`), (`3mn`, `4np`)
Answer: Area = Length × breadth
(i) `p xx q = pq`
(ii) `10m xx 5n = 50mn`
(iii) `20x^2 xx 5y^2 = 100x^2y^2`
(iv) `4x \xx 3x^2 = 12x^3`
(v) `3mn xx 4np = 12mn^2p`
Question 3: Complete the following table of products:
Answer:
Mononomials | 2x | -5y | 3x2 | -4xy | 7x2y | 9x2y2 |
---|---|---|---|---|---|---|
2x | 4x2 | -10xy | 6x3 | -8x2y | 14x3y | -18x3y2 |
-5y | -10xy | 25y2 | -15x2y | 20xy2 | -35x22 | 45x2y3 |
3x2 | 6x3 | -15x2y | 9x4 | -12x3y | 21x4y | -27x4y2 |
-4xy | -8x2y | 20xy2 | -12x3y | 16x2y2 | -28x3y2 | 36x3y3 |
7x2y | 14x3y | -35x2y2 | 21x4y | -28x3y2 | 49x4y2 | -63x4y3 |
-9x2y2 | -18x3y2 | 45x2y3 | -27x4y2 | 36x3y3 | -63x4y3 | 81x4y4 |
Question 4: Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) `5a`, `3a^2`, `7a^4` (ii) `2p`, `4q`, `8r` (iii) `xy`, `2x^2y`, `2xy^2`(iv) `a`, `2b`, `3c`
Answer: Volume = length × breadth × height
(i) `5a \xx 3a^2 xx 7a^4 = 105a^7`
(ii) `2p \xx 4q \xx 8r = 64pqr`
(iii) `xy \xx 2x^2y \xx 2xy^2 = 4x^4y^4`
(iv) `a \xx 2b \xx 3c = 6abc`
Question 5: Obtain the product of
(i) xy, yz, zx (ii) a, – a2, a3(iii) 2, 4y, 8y2 16y3(iv) a, 2b, 3c, 6abc (v) m, – mn, mnp
Answer: (i) `x^2y^2z^2`
(ii) `–a^6`
(iii) `1024y^6`
(iv) `36a^2b^2c^2`
(v) `–m^3n^2p`
Exercise 9.3
Question 1: Carry out the multiplication of the expressions in each of the following pairs.
(i) `4p`, `q + r`
Answer: `4p(q + r) = 4pq + 4pr`
(ii) `ab, `a – b`
Answer: `ab(a - b) = a^2b - ab^2`
(iii) `a + b`, `7a^2b^2`
Answer: `(a + b) (7a^2b^2) = 7a^3b^2 + 7a^2b^3`
(iv) `a^2– 9, `4a`
Answer: `(a^2 - 9)(4a) = 4a^3 - 36a^2`
(v) `pq + qr + rp`, 0
Answer: `(pq + qr + rp) xx 0 = 0`
Question 2: Complete the table.
Answer:
First expression | Second expression | Product |
---|---|---|
a | b + c + d | ab + ac + ad |
x + y - 5 | 5xy | 5x2y + 5xy2 - 25xy |
p | 6p2 - 7p + 5 | 6p3 - 7p2 + 5p |
4p2q2 | p2 - q2 | 4p4q2 - 4p214 |
a + b + c | abc | a2bc + ab2c + abc2 |
Question 3: Find the product.
(i) `a^2 xx (2a^22 xx (4a^26)`
Answer: As you know; `a^m \xx a^n \xx a^o = a^(m+n+o)`
So, we get; `a^2 xx 2a^22 xx 4a^26)= 8a^48`
(ii) `2/3xy\xx(-(9)/(10)x^2y^2)`
Answer: `=-3/5x^3y^3`
(iii) `(10)/(3)pq^3\xx6/5p^3q`
Answer: `=-4p^4q^4`
(iv) `x \xx\ x^2 xx\ x^3 xx \x^8`
Answer: `= x^14`
Question 4: (a) Simplify 3x (4x – 5) + 3 and find its values for (i) `x = 3` (ii) `x =1/2`
Answer:(i) putting `x = 3` in the equation we get
`12x^2 - 15x + 3`
`= 108 - 45 + 3 = 66`
(ii) putting `x = 1/2` in the equation we get
`12xx1/4-(15)/(2)+3=3-(15)/(2)+3=(15)/(2)`
Question 4: (b) Simplify `a (a^2+ a + 1) + 5` and find its value for (i) `a = 0`, (ii) `a = 1` and (iii) `a = – 1`
Answer: `a(a^2+a+1)`
`=a^3+a^2+a`
(i) putting `a= 0` in the equation we get
`0^3 + 0^2 + 0 = 0`
(ii) putting `a = 1` in the equation we get
`1^3+ 1^2+ 1 = 1 + 1 + 1 = 3`
(iii) putting `a = -1` in the equation we get
`-1^3 + 1^2 -1 = -1 + 1 + 1 = 1`
Question 5: (a) Add: `p ( p – q)`, `q ( q – r)` and `r ( r – p)`
Answer:`(p^2 - pq) + (q^2 - qr) + (r^2 - pr)`
`= p^2 + q^2 + r^2 - pq - qr - pr`
(b) Add: `2x (z – x – y)` and `2y (z – y – x)`
Answer: `(2xz - 2x^2- 2xy) + (2yz - 2y^2 - 2xy)`
`= 2xz - 4xy + 2yz - 2x^2 - 2y^2`
(c) Subtract: `3l (l – 4 m + 5 n)` from `4l ( 10 n – 3 m + 2 l )`
Answer: `(40ln - 12lm + 8l^2) - (3l^2 - 12lm + 15ln)`
`= 40ln - 12lm + 8l^2 - 3l^2 - 12lm + 15ln`
`= 55ln - 24lm + 5l^2`
(d) Subtract: `3a (a + b + c ) – 2 b (a – b + c)` from `4c ( – a + b + c )`
Answer:`= (-4ac + 4bc + 4c^2) - (3a^2 + 3ab + 3ac)`
`= -4ac + 4bc + 4c^2 - 3a^2 - 3ab - 3ac`
`= -7ac + 4bc + 4c^2 - 3a^2 - 3ab`