Matrices
NCERT Solution
Exercise 2 Part 3
Question 4: If
A = |
\begin{bmatrix}1 & 2 & -3\\5 & 0 & 2\\1 & -1 & 1\end{bmatrix} |
B = |
\begin{bmatrix}3 & -1 & 2\\4 & 2 & 5\\2 & 0 & 3\end{bmatrix} |
C = |
\begin{bmatrix}4 & 1 & 2\\0 & 3 & 2\\1 & -2 & 3\end{bmatrix} |
Then compute (A + B) and (A – C). Also verify that A + (B - C) = (A + B) - C
Solution:
A + B = |
\begin{bmatrix}4 & 1 & -1\\9 & 2 & 7\\3 & -1 & 4\end{bmatrix} |
B - C = |
\begin{bmatrix}-1 & -2 & 0\\4 & -1 & 3\\1 & 2 & 0\end{bmatrix} |
Now, A + (B – C) = |
\begin{bmatrix}0 & 0 & -3\\9 & -1 & 5\\2 & 1 & 1\end{bmatrix} |
And (A+B) – C = |
\begin{bmatrix}0 & 0 & -2\\9 & -1 & 5\\2 & 1 & 1\end{bmatrix} |
Thus, A + (B - C) = (A + B) - C
Question 5: If
A = |
\begin{bmatrix}2/3 & 1 & 5/3\\1/3 & 2/3 & 4/3\\7/3 & 2 & 2/3\end{bmatrix} |
B = |
\begin{bmatrix}2/5 & 3/5 & 1\\1/5 & 2/5 & 4/5\\7/5 & 6/5 & 2/5\end{bmatrix} |
Compute 3A – 5B
Solution:
3A = |
\begin{bmatrix}2 & 3 & 5\\1 & 2 & 4\\7 & 6 & 2\end{bmatrix} |
5B = |
\begin{bmatrix}2 & 3 & 5\\1 & 2 & 4\\7 & 6 & 2\end{bmatrix} |
Hence, 3A – B = |
\begin{bmatrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix} |
Question 6: Simplify
`text(cos)θ` |
\begin{bmatrix}cosθ & sinθ\\-sinθ & cosθ\end{bmatrix} |
`+text(sin)θ` |
\begin{bmatrix}cosθ & -cosθ\\cosθ & sinθ\end{bmatrix} |
Solution:
= |
\begin{bmatrix}cos^2θ & sinθcosθ\\-sinθcosθ & cos^2θ\end{bmatrix} |
+ |
\begin{bmatrix}sin^2θ & -sinθcosθ\\sinθcosθ & sin^2θ\end{bmatrix} |
= |
\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix} |