Polynomials
Exercise 2.5 Part 9
Question: 8 – Factorise each of the following:
(i) `8a^3 + b^3 + 12a^2\b + 6ab^2`
Answer: Given; `8a^3 + b^3 + 12a^2\b + 6ab^2`
`= (2a)^3 + b^3 + 3(2a)^2\b + 3(2ab^2)`
Let `x = 2a` and `y = b`
Using the identity `(x + y)^3= x^3 + y^3 + 3x^2\y + 3xy^2`
We get; `(2a + b)^3 = (2a + b)(2a + b)(2a + b)`
(ii) `8a^3 - b^3 - 12a^2\b + 6ab^2`
Answer: Given; `8a^3 - b^3 - 12a^2\b + 6ab^2`
`= (2a)^3 - b^3 - 3(2a)^2\b + 3(2a)b^2`
Let `x = 2a` and `y = b`
Using the identity `(x – y)^3= x^3 - y^3 - 3x^2\y + 3xy^2`
We get; `(2a – b)^3 = (2a – b)(2a - b)(2a – b)`
(iii) `27 – 125a^3 - 135a + 225a^2`
Answer: Given; `27 – 125a^3 - 135a + 225a^2`
`= 3^3 - (5a)^3 - 3 xx 3^2\ xx 5a + 3 xx (5a)^2\ xx 3`
Let, `x = 3` and `y = 5a`
Using the identity `(x – y)^3= x^3 - y^3 - 3x^2\y + 3xy^2`
We get; `(3 – 5a)^3= (3 – 5a)(3 – 5a)(3 – 5a)`
(iv) `64a^3 - 27b^3 - 144a^2\b + 108ab^2`
Answer: Given: `64a^3 - 27b^3 - 144a^2\b + 108ab^2`
`= (4a)^3 - (3b)^3 - 3 xx (4a)^2\b + 3 xx a xx (3b)^2`
Let, `x = 4a` and `y = 3b`
Using the identity `(x – y)^3= x^3 - y^3 - 3x^2\y + 3xy^2`
We get; `(4a – 3b)^3= (4a – 3b)(4a – 3b)(4a – 3b)`
(v) `27p^3-(1)/(216)-9/2\p^2+1/4\p`
Solution: Given, `27p^3-(1)/(216)-9/2\p^2+1/4\p`
`=(3p)^3-(1/6)^3-3(3p)^2\xx1/6+3xx3pxx(1/6)^2`
Using identity `(x-y)^3=x^3-y^3-3x^2\y+3xy^2`
We get: `(3p-1/6)^3=(3p-1/6)(3p-1/6)(3p-1/6)`