Quadratic Equation
NCERT Exercise 4.2
Part 1
Question 1: Find the roots of the following quadratic equations by factorization:
(i) `x^2 – 3x – 10 = 0`
Answer: `x^2 – 3x – 10 = 0`
Or, `x^2 – 5x + 2x – 10 = 0`
Or, `x(x – 5) + 2(x – 5) = 0`
Or, `(x + 2)(x – 5) = 0`
Now; case 1: `(x + 2) = 0`
Or, `x = - 2`
Case 2: `(x – 5) = 0`
Or, `x = 5`
Hence, roots are: - 2 and 5
(ii) `2x^2 + x – 6`
Answer: `2x^2 + x – 6 = 0`
Or, `2x^2 + 4x – 3x – 6 = 0`
Or, `2x(x + 2) – 3(x + 2) = 0`
Or, `(2x – 3)(x + 2) = 0`
Case 1: `(2x – 3) = 0`
Or, `2x = 3`
Or, `x = 3/2`
Case 2: `(x + 2) = 0`
Or, `x = - 2`
Hence, roots are – 2 and 3/2
(iii) `sqrt2x^2 + 7x + 5sqrt2 = 0`
Answer: `sqrt2 x^2 + 7x + 5sqrt2 = 0`
Or, `sqrt2 x^2 + 2x + 5x + 5sqrt2 = 0`
Or, `sqrt2x(x + sqrt2) + 5(x + sqrt2) = 0`
Or, `(sqrt2x + 5)(x + sqrt2) = 0`
Case 1: `(sqrt2x + 5) = 0`
Or, `sqrt2x = 5`
Or, `x=-(5)/(sqrt2)`
Case 2: `(x + sqrt2) = 0`
Or, `x = - sqrt2`
Hence, roots are;
`-5/sqrt2` and `-sqrt2`
Question (iv): `2x^2-x+1/8=0`
Answer:
`2x^2-x+1/8=0`
Or, `(16x^2-8x+1)/(8)=0`
Or, `16x^2-4x-4x+1=0`
Or, `16x(x-1/4)-4(x-1/4)=0`
Or, `(16x-4)(x-1/4)`
Hence, `16x-4=0`
Or, `16x=4`
Or, `x=(4)/(16)=1/4`
Similarly;
`x-1/4=0`
Or, `x=1/4`
Hence, ¼ is the root of this equation.
(v) `100x^2 – 20x + 1 = 0`
Answer: `100x^2 – 20x + 1 = 0`
Or, `100x^2 – 10x – 10x + 1 = 0`
Or, `10x(10x – 1) – 1(10x – 1) = 0`
Or, `(10x – 1)(10x – 1) = 0`
Hence; `x = (1)/(10)`