Trigonometry
Exercise 8.1 Part 1
Important Formulae
In the right angle triangle ABC, the right angle is ∠ B
`text(sin A)=text(side opposite to ∠A)/text(hypotenuse)=p/h`
`text(cos A)=text(side adjacent to ∠A)/text(hypotenuse)=b/h`
`text(tan A)=text(side opposite to ∠A)/text(side adjacent to ∠A)=p/b`
If sin, cos or tan ratio are calculated for angle C, then values for p, b and h shall change accordingly.
`text(cosecθ)=(1)/text(sinθ)`
`text(secθ)=(1)/text(cosθ)`
`text(cotθ)=(1)/text(tanθ)`
`text(tanθ)=text(sinθ)/text(cosθ)`
∠ A | 00 | 300 | 450 | 600 | 900 |
---|---|---|---|---|---|
Sin A | 0 | `1/2` | `1/sqrt2` | `sqrt3/2` | 1 |
Cos A | 1 | `sqrt3/2` | `1/sqrt2` | `1/2` | 0 |
Tan A | 0 | `1/sqrt3` | 1 | `sqrt3` | Undefined |
Cosec A | Undefined | 2 | `sqrt2` | `2/sqrt3` | 1 |
Sec A | 1 | `2/sqrt3` | `sqrt2` | 2 | Undefined |
Cot A | Undefined | `sqrt3` | 1 | `1/sqrt3` | 0 |
The value of sin or cos never exceeds 1, but the value of sec and cosec is always greater than or equal to 1.
Trigonometric Identities:
`text(cos)^2A + text(sin)^2A = 1`
`1 – text(sin)^2A = text(cos)^2A`
`1 – text(cos)^2A = text(sin)^2A`
`1 + text(tan)^2A = text(sec)^2A`
`text(sec)^2A – text(tan)^2A = 1`
`text(sec)^2A – 1 = text(tan)^2A`
`text(cot)^2A + 1 = text(cosec)^2A`
`text(cosec)^2A – text(cot)^2A = 1`
`text(cosec)^2A – 1 = text(cot)^2A`
Exercise 8.1 Part 1
Question – 1 - In triangle ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(a) Sin A, Cos A
Solution: AB = 24 cm, BC = 7 cm, AC = ?
The value of AC can be calculated by using Pythagoras Theorem:
`AC^2 = AB^2 + BC^2`
Or, `AC^2 = 24^2+ 7^2`
`= 576 + 49 = 625`
Or, `AC = sqrt(625)=25`
`text(sin A)=(BC)/(AC)=(7)/(25)`
`text(cos A)=(AB)/(AC)=(24)/(25)`
(b) Sin C, Cos C
Solution:
`text(sin C)=(AB)/(AC)=(24)/(25)`
`text(cos C)=(BC)/(AC)=(7)/(25)`
Question – 2 - In the given figure, find tan P – cot R.
Solution: Value of QR can be calculated by using Pythagoras theorem:
`QR^2 = PR^2 – PQ^2`
Or, `OR^2 = 13^2 – 12^2`
`= 169 – 144 – 25`
Or, `OR = 5`
Now;
`text(tan P)-text(cot R)`
`=(QR)/(PQ)-(QR)/(PQ)=0`
Question – 3 - If sin A = ¾, calculate cos A and tan A.
Solution: Sin A = ¾ = p/h
We can calculate b by using Pythagoras theorem;
`b^2 = h^2 – p^2`
Or, `b^2 = 4^2 – 3^2`
`= 16 – 9 = 7`
Or, `b = sqrt7`
Now;
`text(cos A)=b/h=sqrt7/4`
`text(tan A)=p/b=3/sqrt7`
Question – 4 - Given 15 cot A = 8, find sin A and sec A.
Solution: 15 cot A = 8
Or, `cotA=(8)/(15)=b/p`
This means, b = 8 and p = 15
We can calculate h by using Pythagoras theorem;
`h^2 = p^2 + b^2`
Or, `h^2 = 15^2 + 8^2`
`= 225 + 64 = 289`
Or, `h = 17`
Now;
`text(sin A)=p/h=(15)/(17)`
`text(sec A)=h/b=(17)/(8)`
Question – 5 - Given `text(sec θ) = (13)/(12)`, calculate all other trigonometric ratios.
Solution:
`text(sec θ)=(13)/(12)=h/b`
This means, h = 13 and b = 12.
We can calculate p by using Pythagoras theorem;
`p^2 = h^2 – b^2`
Or, `p^2 = 13^2 – 12^2`
`= 169 – 144 = 25`
Or, `p = 5`
Other trigonometric ratios can be calculated as follows:
`text(sin θ)=p/h=(5)/(13)`
`text(cos θ)=b/h=(12)/(13)`
`text(tan θ)=p/b=(5)/(12)`
`text(cosec θ)=h/p=(13)/(5)`
`text(cot θ)=b/p=(12)/(5)`
Question – 6 - If ∠ A and ∠ B are acute angles such that cos A = cos B, then show that ∠ A = ∠ B
Solution: For no two different angles the cos ratio is same. (Ref: Table of trigonometric ratio).